New 3-D bone tissue scaffold printer could speed bone regeneration
by Guy Hiscott
The New York University College of Dentistry has begun testing a three-dimensional bone tissue scaffold printer that could substantially reduce bone regeneration time in the oral cavity and elsewhere in the body.
Bone generated from the scaffolds could be used to shore up alveolar bone to support dental implants, as well as to repair cleft palates, fill in missing pieces of skull, and repair other large and small defects.
The printer, known as a robotic deposition, or Robocaster, converts three-dimensional information from CT scans, MRIs or other indicators of missing or defective areas of bone into custom 3-D printed tissue scaffolds with an unprecedented level of precision. Because the structural elements of the scaffolds are similar in size to in-growing bone structure (~200µm), the bone is expected to grow faster and more accurately than bone generated from other random orientation types of tissue scaffolds.
The scaffolds are made from composites of hydroxyapatite and tricalcium phosphate that remodel with bone. Unlike metal plates used for bone replacement, the scaffolds disappear completely from the body once the bone has regenerated, and do not require surgical removal once the bone is in place. This is an advantage in applications such as cleft palate in children, where permanent scaffolds cannot be used because the bone must be able to change shape as the child grows.
The study is being led by Dr John Ricci, associate professor of biomaterials & biomimetics, and Ms Elizabeth Clark, adjunct assistant professor of biomaterials & biomimetics, in collaboration with Dr Jim Smay of Oklahoma State University.